A decision rule for quantitative trait locus detection under the extended Bayesian LASSO model.

نویسندگان

  • Crispin M Mutshinda
  • Mikko J Sillanpää
چکیده

Bayesian shrinkage analysis is arguably the state-of-the-art technique for large-scale multiple quantitative trait locus (QTL) mapping. However, when the shrinkage model does not involve indicator variables for marker inclusion, QTL detection remains heavily dependent on significance thresholds derived from phenotype permutation under the null hypothesis of no phenotype-to-genotype association. This approach is computationally intensive and more importantly, the hypothetical data generation at the heart of the permutation-based method violates the Bayesian philosophy. Here we propose a fully Bayesian decision rule for QTL detection under the recently introduced extended Bayesian LASSO for QTL mapping. Our new decision rule is free of any hypothetical data generation and relies on the well-established Bayes factors for evaluating the evidence for QTL presence at any locus. Simulation results demonstrate the remarkable performance of our decision rule. An application to real-world data is considered as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

Iteratively reweighted LASSO for mapping multiple quantitative trait loci

The iteratively reweighted least square (IRLS) method is mostly identical to maximum likelihood (ML) method in terms of parameter estimation and power of quantitative trait locus (QTL) detection. But the IRLS is greatly superior to ML in terms of computing speed and the robustness of parameter estimation. In conjunction with the priors of parameters, ML can analyze multiple QTL model based on B...

متن کامل

Extended Bayesian LASSO for multiple quantitative trait loci mapping and unobserved phenotype prediction.

The Bayesian LASSO (BL) has been pointed out to be an effective approach to sparse model representation and successfully applied to quantitative trait loci (QTL) mapping and genomic breeding value (GBV) estimation using genome-wide dense sets of markers. However, the BL relies on a single parameter known as the regularization parameter to simultaneously control the overall model sparsity and th...

متن کامل

Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms.

Bayesian hierarchical shrinkage methods have been widely used for quantitative trait locus mapping. From the computational perspective, the application of the Markov chain Monte Carlo (MCMC) method is not optimal for high-dimensional problems such as the ones arising in epistatic analysis. Maximum a posteriori (MAP) estimation can be a faster alternative, but it usually produces only point esti...

متن کامل

Title : “ An efficient genome - wide multilocus epistasis search ”

High-throughput laboratory techniques are producing vast amount of genomic marker data – discretepredictors to association studies. Linear regression model is often considered to link study phenotypes andthese marker measurements to each other. Number of predictors in multi-marker regression models caneasily be much larger than number of observations. Therefore, one needs applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 192 4  شماره 

صفحات  -

تاریخ انتشار 2012